Optimal Rate Allocation for Shape-Gain Gaussian Quantizers

ISIT 2001 June 26, 2001

Jon Hamkins
Jet Propulsion Laboratory

Ken Zeger University of California, San Diego

Introduction – Vector Quantization

Group source samples into a vector, and quantize the whole vector.

Example: i.i.d. Uniform source, formed into 2D vectors

• • • •

• • • • •

• •

• •

• •

.

• • • • • • •

.

• • •

.

• • •

Quantization Coefficient

The quantization coefficient: average mean squared error per dimension for high rate quantization of a uniform source (scaled so as to be a dimensionless quantity).

Lattice VQ's are good for uniform sources.

Dimension	Lattice	Quantization coefficient
k	\mathbb{Z}^k	$\frac{1}{12} \approx 0.0833$
2	A_2	$\frac{5}{36\sqrt{3}} \approx 0.0802$
3	A_3	0.0787
3	A_3^*	0.0785
24	Λ_{24}	0.0658
$\rightarrow \infty$		optimal: $\frac{1}{2\pi e} \approx 0.0586$

June 26, 2001

A Memoryless Gaussian Source

Let $X=(X_1,\ldots,X_k)$, where $X_i\sim N(0,\sigma^2)$.

In two dimensions (k=2, $\sigma^2=1$):

Properties of a Memoryless Gaussian Source

If $X=(x_1,\ldots,x_k)$, $x_i\sim N(0,\sigma^2)$, and if $Y=(y_1,\ldots,y_k)$, then the prob. dist'n. has spherical symmetry:

$$f_X(Y) = \prod_{i=1}^k \frac{\exp\left(\frac{-y_i^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}} = \frac{\exp\left(\frac{-\|Y\|^2}{2\sigma^2}\right)}{(2\pi\sigma^2)^{k/2}}$$

Properties of the gain ||X||:

pdf:
$$f_{\parallel X \parallel}(r) = \frac{2r^{k-1} \exp\left(\frac{-r^2}{2\sigma^2}\right)}{\Gamma(k/2)(2\sigma^2)^{k/2}}$$

$$\text{mean:} \qquad E[\|X\|] = \frac{\sqrt{2\sigma^2}\,\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} = \frac{\sqrt{2\pi\sigma^2}}{\beta\left(\frac{k}{2},\frac{1}{2}\right)} \approx \sigma\sqrt{k-(1/2)}$$

variance:
$$\operatorname{var}[\|X\|] = k\sigma^2 - \frac{2\pi\sigma^2}{\beta^2\left(\frac{k}{2},\frac{1}{2}\right)} pprox \frac{\sigma^2}{2}$$

Thus, $\|X\|/\sqrt{k\sigma^2}$ has tends to unit-mean, zero-variance as $k\to\infty$. This is "sphere-hardening".

Motivation for Spherical Vector Quantization

Sakrison showed

$$D = \frac{1}{k}E\|X - Q(X)\|^2$$

$$= \frac{1}{k}E\|X_p - Q(X)\|^2 + \frac{1}{k}\underbrace{E\|X - X_p\|^2}_{\text{var}\|X\|}$$

$$= D_s + D_g$$

$$\approx D_s, \text{ for large } k$$

Wrapped Spherical Vector Quantizer

Shape-gain approach: $g = \|X\|$, and $S = \frac{X}{g}$

Gain codebook: scalar quantizer optimized by Lloyd-Max algorithm.

Wrapped spherical code construction

Within each annulus, introduce only small distortion:

Theorem: The quantization coefficient of a wrapped spherical code is within $O(\sqrt{d})$ of the quantization coefficient of the underlying packing used to construct it.

June 26, 2001

Example of shape codebook

Performance Analysis

$$D = \frac{1}{k}E\|X - \hat{g}\hat{S}\|^{2}$$

$$= D_{g} + D_{s}$$

$$= \frac{1}{k}E(g - \hat{g})^{2} + \frac{1}{k}E\hat{g}^{2}E\|S - \hat{S}\|^{2}$$

Performance Analysis

In order to optimize rate allocation, $D=D_g+D_s$ must be estimated under differing shape and gain codebook sizes.

Finite rate:

Evaluate $D_g = \frac{1}{k} E(g - \hat{g})^2$ using $f_g(r)$ and table of \hat{g} outputs.

Evaluate
$$D_s = \frac{1}{k} \underbrace{E\hat{g}^2}_1 \underbrace{E\|S - \hat{S}\|^2}_2$$
 where

1.
$$E\hat{g}^2 = Eg^2 - E(g - \hat{g})^2 \approx Eg^2 = \sigma^2$$

$$2. \qquad E\|S-\hat{S}\|^2 \quad \approx \quad \left(\begin{array}{c} \mathsf{MSE} \ \mathsf{of} \ \mathsf{underlying} \ \mathsf{lattice} \ \Lambda \ \mathsf{used} \ \mathsf{as} \ (k-1) \text{-dimensional quantizer for} \\ \mathsf{uniform} \ \mathsf{source}. \end{array} \right)$$

$$= (k-1)\sigma^2 G(\Lambda)V(\Lambda)^{\frac{2}{k-1}}$$

Asymptotic rate:

Use Bennett's integral to write $D_g \approx C_g 2^{-2R_g k} = C_g 2^{-2k(R-R_s)}$

Write
$$D_s \approx (k-1)\sigma^2 G(\Lambda) V(\Lambda)^{\frac{2}{k-1}} \approx C_s 2^{-2R_s\left(\frac{k}{k-1}\right)}$$

 C_g and C_s are constants independent of R_s and R_g .

Shape-Gain Rate Allocation

$$R = \frac{1}{k} \log_2 \left[(\text{Gain CB size}) \times (\text{Shape CB size}) \right]$$

$$= \frac{1}{k} \log_2 (\text{Gain CB size}) + \frac{1}{k} \log_2 (\text{Shape CB size})$$

$$= R_g + R_s$$

SQNR as a function of gain codebook size, $R=2\,$

Optimize rate allocation by maximizing SQNR using numerical methods.

Shape-Gain Rate Allocation – Asymptotically High Rate

Theorem Let $X \in \mathbb{R}^k$ be an uncorrelated Gaussian vector with zero mean and component variances σ^2 and let Λ be a lattice in \mathbb{R}^{k-1} with normalized second moment $G(\Lambda)$. Suppose X is quantized by a k-dimensional shape-gain vector quantizer at rate $R = R_s + R_g$ (where R_s and R_g are the shape and gain quantizer rates) with independent shape and gain encoders and whose shape codebook is a wrapped spherical code constructed from Λ . Then as $R \to \infty$, the minimum mean squared quantization error D decays as

$$D \approx C_s \left(\frac{k}{k-1}\right) \left(\frac{C_g}{C_s}(k-1)\right)^{1/k} \cdot 2^{-2R} \tag{1}$$

and is achieved by

$$R_{s} = \left(\frac{k-1}{k}\right) \left[R + \frac{1}{2k} \log_{2} \left(\frac{C_{s}}{C_{g}} \cdot \frac{1}{k-1}\right)\right]$$

$$R_{g} = \left(\frac{1}{k}\right) \left[R - \frac{k-1}{2k} \log_{2} \left(\frac{C_{s}}{C_{g}} \cdot \frac{1}{k-1}\right)\right]$$

where
$$C_s = \sigma^2 \cdot (k-1)G(\Lambda) \left(\frac{2\pi^{k/2}}{\Gamma(k/2)}\right)^{\frac{2}{k-1}}$$
 and $C_g = \sigma^2 \cdot \frac{3^{k/2}\Gamma^3\left(\frac{k+2}{6}\right)}{8\Gamma(k/2)}$.

Comments and Conclusions

Comments:

- For large R, $R_s \approx \left(\frac{k-1}{k}\right) R$ and $R_g \approx \frac{1}{k} R$. This means that the shape codebook should have about $2^{(k-1)R}$ codevectors and the gain codebook should have about 2^R scalar codepoints, as intuition would indicate.
- The asymptotic formula is also quite accurate for moderate R. In simulations of the wrapped Leech lattice spherical vector quantizer, we observed that the optimal gain codebook rate was within 8% of this figure when $R \geq 3$ and within 1% when $R \geq 5$.

Conclusions:

- Performance and complexity of quantizers for memoriless Gaussian sources is equivalent to the performance and complexity of quantizers for the uniform source.
- Optimal rate allocations for finite rate and asymptotically large rate were determined.